Context-Aware Semantic Inpainting

نویسندگان

  • Haofeng Li
  • Guanbin Li
  • Liang Lin
  • Yizhou Yu
چکیده

Recently image inpainting has witnessed rapid progress due to generative adversarial networks (GAN) that are able to synthesize realistic contents. However, most existing GAN-based methods for semantic inpainting apply an autoencoder architecture with a fully connected layer, which cannot accurately maintain spatial information. In addition, the discriminator in existing GANs struggle to understand highlevel semantics within the image context and yield semantically consistent content. Existing evaluation criteria are biased towards blurry results and cannot well characterize edge preservation and visual authenticity in the inpainting results. In this paper, we propose an improved generative adversarial network to overcome the aforementioned limitations. Our proposed GANbased framework consists of a fully convolutional design for the generator which helps to better preserve spatial structures and a joint loss function with a revised perceptual loss to capture high-level semantics in the context. Furthermore, we also introduce two novel measures to better assess the quality of image inpainting results. Experimental results demonstrate that our method outperforms the state of the art under a wide range of criteria.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A semantic-aware role-based access control model for pervasive computing environments

Access control in open and dynamic Pervasive Computing Environments (PCEs) is a very complex mechanism and encompasses various new requirements. In fact, in such environments, context information should be used in access control decision process; however, it is not applicable to gather all context information completely and accurately all the time. Thus, a suitable access control model for PCEs...

متن کامل

A Context-aware Architecture for Mental Model Sharing through Semantic Movement in Intelligent Agents

Recent studies in multi-agent systems are paying increasingly more attention to the paradigm of designing intelligent agents with human inspired concepts. One of the main cognitive concepts driving the core of many recent approaches in multi agent systems is shared mental models. In this paper, we propose an architecture for sharing mental models based on a new concept called semantic movement....

متن کامل

A Temporally-Aware Interpolation Network for Video Frame Inpainting

We propose the first deep learning solution to video frame inpainting, a challenging instance of the general video inpainting problem with applications in video editing, manipulation, and forensics. Our task is less ambiguous than frame interpolation and video prediction because we have access to both the temporal context and a partial glimpse of the future, allowing us to better evaluate the q...

متن کامل

Context-aware image inpainting with application to virtual restoration of old paintings

In this paper, we explore how to use spatial context for image inpainting and we test it in two applications: photoediting and crack removal in digitized old paintings. Context is determined based on the texture and color features. We use these contextual features to guide the search for image patches that can fill in the missing/damaged regions in a visually plausible way. A priori knowledge a...

متن کامل

A Region Boundary Reconstruction Method for Structure-Aware Image Inpainting

This paper presents a structure-aware inpainting, which automatically reconnects broken links of boundaries on a missing region, then inpaints each remaining part by exemplars.This paper presents a structure-aware inpainting, which automatically reconnects broken links of boundaries on a missing region, then inpaints each remaining part by exemplars. Boundary contours obtained by a region segme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1712.07778  شماره 

صفحات  -

تاریخ انتشار 2017